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Motivations

▣ Numerical simulations of CFD & CSD become more powerful (in accuracy, 

speed, memory,.. ), 그렇지만, practical application 등의수치해석의정확도는높
아지고있으나실시간계산과 Digital Twin 으로의응용은제한이많음.

▣ 실시간계산/예측, 설계, 디지털트윈에사용되어지기위해서는적은수의관심
성능변수 (항력, 추력, 양력)에대한 surrogate model을사용하는기법은기존에
도많았음: Kriging, radial basis function, artificial neural network. Scalar outputs: 

공력, 항력, 추력; Field of state variables (p, , velocities, …)

▣ 실시간으로 CFD와같은 O(105~6)차수의상태변수를구할수는없을까? 

→ ROM using POD-Machine Learning

→ AI methods for pattern/image process, prediciton & design: CNN, LSTM, GAN

❑ Input parameter가다양할수있을까? 유동조건 (Re, Mach, AOA), 형상, 시간등

▣ 차수저감모델과인공지능기법등의다양한데이터기반모델과기법들이사용
되어질수있다. 인공지능기법이최선인가? 
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Contents

I. POD-based Reduced Order Model

- Dimensionality reduction shape and time

- POD-GPR (Shape) vs. POD-LSTM (Time)

II. Deep neural network (DNN) based Reduced Order Model

- Convolutional Neural Network – U Net

- Time, Flow conditions (Mach or AOA), and Shape

- Generative Adversarial Network for Design 
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Reduced Order Model

(source: Turbulence, Wikipedia) (source: No Matter What You Fly, This Wake Turbulence 

Accident Could Happen To You, Boldmethod)

(source: “Don’t play games with it”: Hurricane Florence, 

weakens slightly, as it churns toward East Coast, CBS)

- Many scientific problems are of high dimensions in the complexity with coherent 

structures of various scales; i.e., turbulent flows, wing trailing vortex, storms, etc.

- Reduced Order Model(ROM) 

• Dynamic behavior of complex and nonlinear physical systems

• Full order model decomposed into a sum of linear basis functions or modes: (When 

taking 100 snapshots to the 86214 grid points, only calculation of 100 by 100 matrices are needed.)

Stanford Bunny

- Proper Orthogonal Decomposition Methods

- Reduced Basis Methods

- Balancing Methods

- Simplified Physics or Operational based Reduction Methods
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Proper Orthogonal Decomposition(POD) Method

න𝑅 𝑥, 𝑥′ 𝜙 𝑥′ 𝑑𝑥′ = 𝜆𝜙(𝑥)

▪ Fredholm integral equation (Eigenvalue equation)

▪ 2–dimensional space 
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▪ Description of Eigenfunction 𝜙(𝑥)

𝜙 𝑥 = ෍

𝑛=1

𝑀

𝑞𝑛𝑢
𝑛 𝑥 𝑢 𝑛 𝑥 = 𝑢 𝑥, 𝑡𝑛

Sampling time

No. of snapshots

𝑡𝑛

M

𝑎𝑖𝑗 = 𝑑𝑥𝑑𝑦
𝑢𝑖𝑢𝑗 𝑢𝑖𝑣𝑗

𝑣𝑖𝑢𝑗 𝑣𝑖𝑣𝑗

Ref) Sirovich, L. (1987). “TURBULENCE ANS THE DYNAMICS OF COHERENT STRUCTURES PART 1: COHERENT STRYCTYRES”, Quarterly of Applied Mathematics, 45(3), 561-571.

Eigenvector of R
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Proper Orthogonal Decomposition(POD) Method

▪ 2-dimensional space 
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✓ Eigen value problem of M by M Matrix
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POD with Unsteady Cylinder Flows

Time dependent problem: Cylinder problem

Simulation

condition
Value

Scheme
Spatial 2nd order 3-dimensional

Temporal 2nd order implicit unsteady

Turbulent 

Modeling

Turbulent model Realizable k-ε

Wall treatment All y+ wall treatment

Calculation 

Time

Maximum physical 

time

300 sec 

(Converged about 50 sec)

Delta time 0.01 sec

Fluid
Flow properties Segregated

Type Incompressible Air

▪ CFD Solver: Star-ccm+ 

✓ Determined values

▪ Diameter of cylinder 1m

▪ Reynolds Number 67,567

▪ No. of grids 260,576

✓ Physics model of simulation

➢ X-velocity(above) and Y-velocity(below) from 200 sec to 210 sec

𝐸𝑟𝑟𝑜𝑟 =
1

𝑁
෍

𝑖=1

𝑁

(𝑦𝑜 − 𝑦𝑖)
2

✓ Error Calculation

➢ Mesh shape of the cylinder simulation
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Snapshots

Time

𝑋1

𝑋2

𝑋3

𝑋4

𝑋𝑛

𝑋1
1 𝑋1

2

𝑋2
1 𝑋2

2

⋮
𝑋n
1

⋮
𝑋n
2

… 𝑋1
𝑛

… 𝑋2
𝑛

⋱
…

⋮
𝑋n
𝑛

▪ Collection of Samples ▪ Organize as matrix ▪ Mode decomposition

FOM 5-POD  reconstructed (99%)

POD with Unsteady Cylinder Flows
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Time dependent problem: Cylinder problem – POD mode analysis

1 mode 1.19sec 2 mode/1.20sec 10 

mode/1.21sec

50 mode/1.24sec

Error: 1.012e-03 Error: 3.9789e-05 Error: 2.3153e-08 Error: 4.5555e-12

POD with Unsteady Cylinder Flows



❖ Reference

• Z. R. Kishev, C. Hu, and M. Kashiwagi (2006) “Numerical simulation of violent sloshing by a CIP-based 

method”, Journal of Marine Science and Technology, 11, 111-122.

➢Forced horizontal oscillation: 

10

120

Senso

r

• Water height : 0.12m (filling level: 40%H)

• Sensor height : 0.10m

• Amplitude : 0.05m

• Period : 1.50s (Moderate) , 1.30s (Violent)

𝜼 = 𝑨𝐬𝐢𝐧 𝝎𝒕

Validation: Sloshing case – mild, moderate & violent 

𝜼 = 𝑨𝐬𝐢𝐧 𝝎𝒕

Collaboration with PNU (PI-박종천)



Mild Sloshing

❖ Measuring Position

✓ Pressure measurement of wall plane (4 Points)

➢ Case1 – X = 0m, Z = -0.06m

➢ Case2 – X = 0m, Z = -0.02m

➢ Case3 – X = 0m, Z = +0.02m

➢ Case4 – X = 0m, Z = +0.06m

11

✓ Velocity measurement (2 Points)

➢ Case5 – X = 0.45m, Z = -0.02m

➢ Case6 – X = 0.45m, Z = +0.02m

✓ Volume of Fraction measurement of wall plane (1 Points)

➢ Case7 – X = 0.0m, Z = 0.0m



▪ 1 mode (95.247% of Total Energy)

▪ 1 mode (95.247% of Total Energy)

Mild Sloshing

✓ Comparison of original & reconstructed time series graph

❖ Reconstruction of pressure field (Case2 – X= 0m, Z= -0.02m)

✓ Comparison of original & reconstructed time series graph

▪ 15 modes (99.991% of Total Energy)

▪ 15 modes (99.991% of Total Energy)
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❖ Reconstruction of pressure field (Case1 – X= 0m, Z= -0.06m)



▪ 1 mode (95.247% of Total Energy)

▪ 1 mode (95.247% of Total Energy)

❖ Reconstruction of pressure field (Case3 – X= 0m, Z= +0.02m)

✓ Comparison of original & reconstructed time series graph

❖ Reconstruction of pressure field (Case4 – X= 0m, Z= +0.06m)

✓ Comparison of original & reconstructed time series graph

▪ 15 modes (99.991% of Total Energy)

▪ 15 modes (99.991% of Total Energy)
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Mild Sloshing



▪ 1 mode (94.837% of Total Energy)

▪ 1 mode (94.837% of Total Energy)

❖ Reconstruction of Velocity field (Case5 – X= 0.45m, Z= -0.02m)

✓ Comparison of original & reconstructed time series graph

❖ Reconstruction of Velocity field (Case6 – X= 0.45m, Z= +0.02m)

✓ Comparison of original & reconstructed time series graph

▪ 5 modes (99.149% of Total Energy)

▪ 5 modes (99.149% of Total Energy)▪ 29 modes (99.902% of Total Energy)

▪ 29 modes (99.902% of Total Energy)
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Mild Sloshing



❖ Reconstruction of Volume of Fluid (Case7 – X= 0m, Z=0m)

✓ Comparison of original & reconstructed time series graph

▪ 177 modes (99.901% of Total Energy)

▪ 1 mode (55.891% of Total Energy) ▪ 40 mode (99.009% of Total Energy)

▪ 438 modes (99.990% of Total Energy) ▪ 710 modes (99.999% of Total Energy)
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n = No.of snapshots 

𝐸𝑟𝑟𝑜𝑟 =
σ𝑖=1
𝑛 (𝑝𝑃𝑂𝐷

𝑖 − 𝑝𝐶𝐹𝐷
𝑖 )2

𝑛

▪ RMSE (Root mean square error)

Mild Sloshing



❖ Measuring Position

✓ Pressure measurement of wall plane (2 Points)

➢ Case1 – X = 0.0m, Z = - 0.02m

➢ Case2 – X = 0.0m, Z = + 0.02m
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✓ Volume Fraction measurement of wall plane (2 Points)

➢ Case3 – X = 0.0m, Z = 0.0m

Moderate Sloshing



▪ 1 mode (81.143% of Total Energy)

❖ Reconstruction of pressure field (Case1 – X= 0m, Z= -0.02m)

✓ Comparison of original & reconstructed time series graph

❖ Reconstruction of pressure field (Case2 – X= 0m, Z= +0.02m)

✓ Comparison of original & reconstructed time series graph

▪ 35 modes (99.017% of Total Energy)▪ 115 mode (99.900% of Total Energy) ▪ 286 mode (99.990% of Total Energy)

▪ 1 mode (81.143% of Total Energy) ▪ 35 mode (99.017% of Total Energy)▪ 115 mode (99.900% of Total Energy) ▪ 286 mode (99.990% of Total Energy)

17

Moderate Sloshing



❖ Reconstruction of Volume of Fluid (Case3 – X= 0m, Z= 0m)

✓ Comparison of original & reconstructed time series graph
▪ 1 mode (46.043% of Total Energy) ▪ 30 mode (90.028% of Total Energy)

▪ 316 mode (99.001% of Total Energy) ▪ 732 mode (99.900% of Total Energy)

n = No.of snapshots 

𝐸𝑟𝑟𝑜𝑟 =
σ𝑖=1
𝑛 (𝑝𝑃𝑂𝐷

𝑖 − 𝑝𝐶𝐹𝐷
𝑖 )2

𝑛

▪ RMSE (Root mean square error)
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Moderate Sloshing



❖ Measuring Position
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✓ Pressure measurement of wall plane (2 Points)

➢ Case1 – X = 0.0m, Z = - 0.02m

➢ Case2 – X = 0.0m, Z = + 0.02m

✓ Volume Fraction measurement of wall plane (2 Points)

➢ Case3 – X = 0.0m, Z = 0.0m

Violent Sloshing



▪ 1 mode (77.765% of Total Energy)

▪ 1 mode (77.765% of Total Energy)

❖ Reconstruction of pressure field (Case1 – X= 0m, Z= -0.02m)

✓ Comparison of original & reconstructed time series graph

Violent sloshing

❖ Reconstruction of pressure field (Case2 – X= 0m, Z= +0.02m)

✓ Comparison of original & reconstructed time series graph

▪ 35 mode (99.010% of Total Energy)▪ 131 mode (99.901% of Total Energy) ▪ 331 mode (99.990% of Total Energy)

▪ 35 mode (99.010% of Total Energy)▪ 131 mode (99.901% of Total Energy) ▪ 331 mode (99.990% of Total Energy)
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▪ 1 mode (52.329% of Total Energy)

❖ Reconstruction of Volume of Fluid (Case3 – X= 0m, Z= 0m)

✓ Comparison of original & reconstructed time series graph

Violent sloshing

▪ 17 mode (90.128% of Total Energy)

▪ 295 mode (99.004% of Total Energy) ▪ 715 mode (99.900% of Total Energy)

n = No.of snapshots 

𝐸𝑟𝑟𝑜𝑟 =
σ𝑖=1
𝑛 (𝑝𝑃𝑂𝐷

𝑖 − 𝑝𝐶𝐹𝐷
𝑖 )2

𝑛

▪ RMSE (Root mean square error)

21
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Efficiency and Accuracy of POD Analysis

▪ Since the computation efficiency and accuracy of POD is affected by the No.of snapshots, it is important 

to use an appropriate No.of snapshots.

▪ The more intense the sloshing motion, the greater the number of modes used.

➢ In all cases, POD mode 1 plays the most dominant role, and it can be seen that the energy level of the flow field using one mode in 

Mild sloshing is higher compared to Moderate and Violent.

➢ Moderate & Violent sloshing should use more mode than Mild sloshing.

▪ The flow field can be reconstructed using key modes through POD analysis.

▪ In special cases, it is also possible to determine the total energy mode of the flow field at one point.

(pressure gauge point, free surface check, etc.)

❖ Sloshing problem

▪ Through CFD-Snapshot based POD, the order can be reduced by analyzing the sloshing(Mild, 

Moderate, Violent) problem and extracting the important mode.

❖ POD analysis of sloshing

Pressure(99.99%) Velocity(99.9%) Volume of Fluid(99.9%)

Mild 15 modes 29 modes 177 modes

Moderate 286 modes 561 modes 732 modes

Violent 331 modes 576 modes 715 modes
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❖ ANN algorithm for time series – LSTM(Long Short-Term Memory)

• A type of Recurrent Neural Network(RNN)

• The algorithm for learning time series data

• Consisting of input gate, output gate, and forget gate

• Storage of long-term memory(cell state) through forget gate

• Overcoming the vanishing long term problem in typical RNN

• Good performance at predicting, but complicated structure

➢Mechanism of LSTM cell

• Reference 

Long Short-Term Memory : From Zero to Hero with PyTorch, FloydHub Blog

➢Principle of LSTM

LSTM for Prediction at Untested Time
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𝜙1
𝜙2

𝜙𝑚

𝛼(𝑡)1

𝛼(𝑡)2

𝛼(𝑡)𝑚

Training Data #1

𝑇𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 𝑓𝑙𝑜𝑤

Training dataset

POD

TRAINING1. Select different planes 

as training datasets

2. “Learn” temporal dynamics

α t of (dominant) POD modes 

from all training datasets

LSTM Neural Network

𝛼(𝑡)1

𝛼(𝑡)2

𝛼(𝑡)𝑚

𝜙1

𝜙2

𝜙𝑚

Test data

POD

𝜙1
𝜙2

𝜙𝑚

𝛼(𝑡)1

𝛼(𝑡)2

𝛼(𝑡)𝑚

Training Data #2

𝑇𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 𝑓𝑙𝑜𝑤

Training dataset

POD

𝜙1
𝜙2

𝜙𝑚

𝛼(𝑡)1

𝛼(𝑡)2

𝛼(𝑡)𝑚

Training Data #N

𝑇𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 𝑓𝑙𝑜𝑤

Training dataset

POD

𝛼(𝑡 + 𝑡′)1

𝛼(𝑡 + 𝑡′)2

𝛼(𝑡 + 𝑡′)𝑚

3. Predict temporal 
behavior 𝛼(𝑡 + 𝑡′)𝑖 of 
test data POD modes, 
given previous time 
history 𝛼(𝑡)𝑖 and trained 
model

PREDICTION

❖ Conceptual view of ROM using LSTM Neural Network

LSTM for Prediction at Untested Time
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❖ Pressure (Energy : 99.99% , Modes : 15)

Mild Sloshing Case

➢Original Value ➢POD Value ➢POD+LSTM Value

➢RMSE (POD) ➢RMSE (POD+LSTM)
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❖ Pressure (Energy : 99.99% , Modes : 286)

➢Original Value ➢POD Value ➢POD+LSTM Value

➢RMSE (POD) ➢RMSE (POD+LSTM)

Moderate Sloshing Case
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❖ Pressure (Energy : 99.99% , Modes : 331)

➢Original Value ➢POD Value ➢POD+LSTM Value

➢RMSE (POD) ➢RMSE (POD+LSTM)

Violent Sloshing Case



28

Only CFD
(STAR-CCM+)

POD+LSTM

(All Process)

POD+LSTM

(Only Prediction)
Hardware Specification

Mild 15,627 sec 3,245 sec 65 sec

Only CFD : Intel core I9-9960X

POD+LSTM : Nvidia RTX 3080

Moderate 41,055 sec 14,868 sec 548 sec

Violent 42,087 sec 15,932 sec 650 sec

➢Total Elapsed Time for Calculation

Accuracy vs. Efficiency 

➢Number of POD modes for 99.99% energy level
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Steady, shape varying problem: 2D Transonic Airfoil flows

➢RAE2822 Airfoil

▪ CFD Solver: Stanford University multi-block (SUmb)

- Governing Equations: Inviscid Euler, cell-centered FVM

- Spatial Discretization: 2nd order centered differencing with JST dissipation 

scheme

- Temporal integration: 2nd order backward difference formulation

- Shape parameterization: Hicks-Henne Bump function, Latin hypercube 

sampling

Shape Design by POD-GPR: 
Time-Independent, Shape Varying Problems

Mach AoA Grid Solver

0.725 2.92°
351×51 
(C-type)

SUmb
(Inviscid
Euler)

Airfoil
Bump 
no.

Deform 
range

RAE2822 14 1%

➢Flow simulation setting ➢Shape deformation setting ➢RAE2822 Airfoil Bump location
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Time independent, shape varying, problem: 2D Transonic Airfoil flows

▪ The airfoil was parameterized by using the following H-H Bump function

▪ 𝑡1is the location of the maximum bump and 𝑡2 is the width of the bump.

▪ Using Latin-Hypercube Sampling, randomly transform 𝜇𝑖 to create snapshot data set consisting 

of various airfoil

➢ H-H Bump Function ➢ Deformed Airfoil

(source: Sabater et al.)

𝑦

= 𝑦𝑏𝑎𝑠𝑒 +෍

𝑖

𝑛

𝜇𝑖𝑏(𝑥𝑖)

POD with Shape Parameters 
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Steady, shape varying problem: 2D Transonic Airfoil flows

Shape Design with POD-GPR: 
Time-Independent, Shape Varying Problems
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Steady, shape varying problem: 2D Transonic Airfoil flows – POD-GPR Results

1mode / 0.001sec 

Error: 3.5857e-04 

10modes / 0.0156sec 

Error: 8.8978e-06

50modes / 0.0794sec 

Error: 8.1579e-09 

20modes / 

0.0313sec 

Error: 8.8979e-07 

Error: 5.1534e-05 Error: 6.7407e-05 Error: 4.3092e-05

➢ Results of ROM for different design cases reconstructed by 38 modes

➢ POD analysis

Shape Design with POD-GPR: 
Time-Independent, Shape Varying Problems
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Optimization Loop

Shape Optimization Process

Design variables, 𝜇

Snapshots

Reconstruction

Full order CFD 
Data base

POD analysis & 
Model Reduction

Machine Learning 
for flow field 
reconstruction

Insert 𝜇, 𝑐 in NSGA-
ll

Change 𝜇 with 
offspring algorithm

Estimate 𝑐 using 𝜇
and reconstruct flow 

field

Calculate objective 
function and fitness

Termination criteria 
evalution

Yes
End Algorithm

Iteration
Loop

Add FOM of improved 
design to data base

No

Is it the optimum 
solution?

Pros: 

(1) No CFD is needed during iterations, 

(2) Flow field data available at each iteration
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Transonic wave drag minimization – POD-GPR

Original Optimized Difference

Cd 0.01239 0.00682 - 44.51%

Cl 0.86292 0.86178 - 0.13%

➢ Optimized 
Airfoil

➢ Optimized -Cp
plot

Design with POD-GPR: 
Time-Independent, Shape Varying Problems
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Transonic wave drag minimization - Optimization Result 

➢ Original Flow Field ➢ Optimized Flow Field

Design with POD-GPR: 
Time-Independent, Shape Varying Problems
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Time independent, shape varying, problem: 2D Transonic Airfoil flows

Method Sec

Full Order Model CFD 240

POD-GPR

Modal reduction 32.89

Learning 
& Prediction

4.39

Reconstruction 0.55

Total 37.83
➢ Comparison between FOM CFD and POD-GPR reconstruction runtime

▪ CFD is measured at 240 seconds and POD-GPR is measured at 38 seconds. (6.3% of 

CFD)

▪ Reconstruction time is 0.55 seconds and it is expected to be faster during optimization 

because ML and MR execute only once and data load time is excluded

▪ Also error was very small, with an average of 1e-05

Calculation time comparison between FOM and ROM

POD with Shape Parameters 
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Convolution neural network 
(CNN, 합성곱 신경망)

Fig. Overall Structure of CNN

- CNN은 인간의 시신경 구조를 모방한 신경망으로 이미지를 인식하고 패턴을 학

습하는 것에 특히 유용하여 자율주행 자동차, 얼굴인식과 같은 컴퓨터 비전 분

야에 많이 사용되고 있다.

- Fully connected layer 만으로 구성된 인공 신경망에 이미지를 학습시키는 경우,

3차원(RGB) 이미지를 1차원으로 평면화 시켜야하며, 이때 발생하는 이미지의

위치 정보 유실로 인해 학습 성능이 떨어지는 한계가 있으나 CNN은 이런 한계

점을 보완한 신경망이다.

- CNN은 아래 그림과 같이 이미지의 특징을 추출하는 부분과 분류하는 부분으로

나눌 수 있다. Convolution layer 와 pooling layer를 쌓아 이미지 특징을 추출

하고(feature extraction), FC layer를 이용해 특징을 분류한다.

Convolution layer

Filter

Padding

Pooling layer
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Conditional U-Net (Encoder-Decoder)

- U-net은 battle neck layer를 기준으로 U자 대칭 형태를 이루고 있으며, 인코

더와 디코더로 구성되어 있다.

- U-net은 저차원 정보만을 이용해 고차원으로 복원하는 Auto-Encoder(AE)와

는 달리 디코딩 시 저차원은 물론 인코딩에 사용한 고차원 특징 정보를 모두

사용한다. (그림의 빨간 원)

- 이러한 특징으로 인해 기존 CNN에 비해 고해상도 이미지 복원이 가능하며, 

인코딩 시 손실되는 객체의 정확한 위치정보 파악이 가능하다.

- Conditional U-net의 경우 특정 조건(Condition)을 추가하여 사용자가 원하는

방향으로 출력 생성에 영향을 줄 수 있다.

Encod

er

Decod

er

Bottle 

neck

Fig 1. Structure of typical U-Net
Input

(x, y)

Output

(u, v, p)

Conditions 

(Mach, AoA etc.)

Fig 2. Structure of Conditional U-Net
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U Net for Time Parameters

Fig 1. Error contour of Predicted x-velocity error contour

Condition
al 

U-Net

𝒕 = 𝟏𝟎. 𝟑 𝒕 = 𝟏𝟑. 𝟗 𝒕 = 𝟏𝟕. 𝟓

POD-
GPR

POD-GPR
Conditional 

U-Net

u 3.47% 2.96%

p 1.08% 0.86%

Table 1. Mean relative error

CFD 계산 시간: 4hr (for t = 0~18)

GPR 학습 시간 : 37.28 sec
GPR 유동장 예측시간 : 0.55 sec

Unet 학습시간 : 3 hr (학습조건 따라
상이)
Unet 유동장 예측시간 : 0.73 sec

- Data information : eppler387, AoA=16, Mach=0.6 

- Time step : t = 10~18 (non-dimensional), total 80 time steps (dt=0.1)

- Train data: 20 (10.1, 10.5, 10.9 … 17.7, validation 10%) 

- Test data : 20 (10.3, 10.7, 11.1 … 17.9)

Fig 1. Error contour of Predicted x-velocity error contour
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U Net for Flow Condition Parameters

POD-GPR
Conditional 

U-Net

u 0.11% 0.39%

p 0.045% 0.091%

Table 1. Relative 
error

- Data information : NACA0012, AoA=0~7(0.5), Mach=0.3~0.5(0.025), 15 AoAs x 9 Mach= 

135 flow fields

- Train data: 123 (validation 10%)

- Test data : 12

Fig 1. Predicted pressure coefficient contour at various flow 
condition

Mach 0.325

AoA 𝟏. 𝟓°
Mach 0.375

AoA 𝟒°
Mach 0.425

AoA 𝟔. 𝟓°

Conditional 
U-Net

POD-GPR

CFD 계산 시간: 252 sec (for 1 case)

GPR 학습 시간 : 32.96 sec
GPR 유동장 예측시간 : 0.55 sec

Unet 학습시간 : 1.7 hr (학습조건 따라 상
이)
Unet 유동장 예측시간 : 0.73 sec
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U Net for Shape & Flow Condition Parameters

- Total number of data set : UIUC 500 shapes x 26 AoAs = 13000 flow fields

- Training data : 12900 (validation 10%)

- Test data : 100 (random 20 shapes x AoA 3, 6, 9, 12, 15)

Mean relative error of test data = 
0.28%

Fig 1. Predicted pressure coefficient contour at various airfoils and AoA

CFD 계산 시간: 180 sec (for 1 case)

Unet 학습시간 : 0.5 hr (학습조건 따라 상
이)
Unet 유동장 예측시간 : 0.73 sec
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GAN for Design

▣ GAN for Design Candidate Generation, or Inverse Design

Training dataset: 

Smooth sinusoidal trajectories

과거
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Thank You !


